Femtosecond laser disruption of filamentous cyanobacteria unveils dissimilar cellular stability between heterocysts and vegetative cells.
نویسندگان
چکیده
Filamentous cyanobacteria develop heterocysts in response to deprivation for combined nitrogen under aerobic conditions. The most prominent structural change in heterocysts is the biosynthesis of an envelope that restricts gas permeability, providing an appropriate micro-oxic environment for N2 fixation inside. The additional thickness of the differentiated cells, when compared to vegetative cells, makes filamentous cyanobacteria an attractive biological system to investigate cellular response against femtosecond laser processing. By irradiating the cyanobacterial filaments with 120 fs, 795 nm, 1 kHz pulses focused through a 100x microscope objective with a numerical aperture of 0.85, we have determined that the pulse energy threshold for an apparent disruption of the cell wall of vegetative cells is 13 +/- 4 nJ per pulse. A further increase in the pulse energy to 43 +/- 13 nJ causes the complete removal of vegetative cells. In contrast, the pulse energy threshold has to be augmented about three-fold for heterocyst envelope disruption or two-fold for complete removal of heterocysts. We propose that the singular cross-linked structure of the glycolipid multilayer of the envelope, required to restrict gas permeability, accounts for the remarked difference in the ablation energy threshold between vegetative cells and heterocysts.
منابع مشابه
Characterization of thylakoid membrane in a heterocystous cyanobacterium and green alga with dual-detector fluorescence lifetime imaging microscopy with a systematic change of incident laser power.
Fluorescence Lifetime Imaging Microscopy (FLIM) has been applied to plants, algae and cyanobacteria, in which excitation laser conditions affect the chlorophyll fluorescence lifetime due to several mechanisms. However, the dependence of FLIM data on input laser power has not been quantitatively explained by absolute excitation probabilities under actual imaging conditions. In an effort to disti...
متن کاملA second nitrogenase in vegetative cells of a heterocyst-forming cyanobacterium.
In many filamentous cyanobacteria nitrogen fixation occurs in differentiated cells called heterocysts. Filamentous strains that do not form heterocysts may fix nitrogen in vegetative cells, primarily under anaerobic conditions. We describe here two functional Mo-dependent nitrogenases in a single organism, the cyanobacterium Anabaena variabilis. Using a lacZ reporter with a fluorescent beta-gal...
متن کاملCyanobacterial Heterocysts
Cyanobacteria are phototrophic bacteria carrying out oxygen-producing photosynthesis. Indeed, cyanobacteria were the inventors of oxygenic photosynthesis carried out by eukaryotic algae and plants. Besides showing the capability of building their cellular carbon from carbon dioxide, available in the atmosphere, several strains of cyanobacteria have also acquired the ability to fix molecular din...
متن کاملThe multicellular nature of filamentous heterocyst-forming cyanobacteria.
Cyanobacteria carry out oxygenic photosynthesis, play a key role in the cycling of carbon and nitrogen in the biosphere, and have had a large impact on the evolution of life and the Earth itself. Many cyanobacterial strains exhibit a multicellular lifestyle, growing as filaments that can be hundreds of cells long and endowed with intercellular communication. Furthermore, under depletion of comb...
متن کاملTransformation of thylakoid membranes during differentiation from vegetative cell into heterocyst visualized by microscopic spectral imaging.
Some filamentous cyanobacteria carry out oxygenic photosynthesis in vegetative cells and nitrogen fixation in specialized cells known as heterocysts. Thylakoid membranes in vegetative cells contain photosystem I (PSI) and PSII, while those in heterocysts contain predominantly PSI. Therefore, the thylakoid membranes change drastically when differentiating from a vegetative cell into a heterocyst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Photochemistry and photobiology
دوره 84 6 شماره
صفحات -
تاریخ انتشار 2008